Math, asked by durgawabhitkar526, 1 month ago

1. integration cosecx .dx =log | tan (x/2) |+ c ​

Answers

Answered by mathdude500
2

\underline{\bold{Given \:Question - }}

Prove that

\rm :\longmapsto\:\displaystyle\int\tt cosecx \: dx \:  =  \: log |tan\dfrac{x}{2} |  + c

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\tt cosecx \: dx

On multiply cosecx + cotx, we get

\rm \:  =  \:  \: \displaystyle\int\tt cosecx \times \dfrac{cosecx + cotx}{cosecx + cotx} \: dx

\rm \:  =  \:  \: \displaystyle\int\tt \dfrac{ {cosec}^{2} x + cosecx \: cotx}{cosecx + cotx} \: dx

\red{\rm :\longmapsto\:cosecx + cotx = y}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}(cosecx + cotx) = \dfrac{d}{dx}y

\rm :\longmapsto\: - cosecxcotx -  {cot}^{2}x = \dfrac{dy}{dx}

\rm :\longmapsto\: - (cosecxcotx +  {cosec}^{2}x)dx = dy

\rm :\longmapsto\:  (cosecxcotx +  {cosec}^{2}x)dx \:  =  \:  -  \: dy

So, now given integral reduced to

\rm \:  =  \:  \:  -  \: \displaystyle\int\tt  \frac{dy}{y}

\rm \:  =  \:  \:  - log |y| + c

\rm \:  =  \:  \:  log | {y}^{ - 1} | + c

\rm \:  =  \:  \:  log | \dfrac{1}{y} | + c

\rm \:  =  \:  \:  log \bigg | \dfrac{1}{y}  \bigg| + c

\rm \:  =  \:  \:  log \bigg | \dfrac{1}{cosecx + cotx}  \bigg| + c

\rm \:  =  \:  \:  log \bigg | \dfrac{1}{\dfrac{1}{sinx} + \dfrac{cosx}{sinx} }  \bigg| + c

\rm \:  =  \:  \:  log \bigg | \dfrac{sinx}{ 1 + cosx}  \bigg| + c

\rm \:  =  \:  \:  log \bigg | \dfrac{2sin\dfrac{x}{2} cos\dfrac{x}{2} }{  {2cos}^{2} \dfrac{x}{2} }  \bigg| + c

\rm \:  =  \:  \:  log \bigg | \dfrac{sin\dfrac{x}{2} }{cos\dfrac{x}{2} } \bigg| + c

\rm \:  =  \:  \:  log \bigg | tan\dfrac{x}{2}  \bigg| + c

Hence,

\rm :\longmapsto\:\displaystyle\int\tt cosecx \: dx \:  =  \: log |tan\dfrac{x}{2} |  + c

Formula Used :-

\boxed{ \rm{ \dfrac{d}{dx}cosecx =  - cosecxcotx}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  -  \:  {cosec}^{2}x}}

\boxed{ \rm{ \displaystyle\int\tt  \frac{1}{x}dx = log |x|  + c}}

\boxed{ \rm{ sin2x = 2sinx \: cosx}}

\boxed{ \rm{ 1 + cos2x =  {2cos}^{2}x}}

Similar questions