Physics, asked by thameet, 8 months ago

1: Integration ( sinx+e^x)dx. 2: integration x^-3dx. 3:integration 2x^2dx please explain wit steps​

Answers

Answered by Rohit18Bhadauria
5

1)

Given:

A function

f(x)= sinx+eˣ

To Find:

Integration of f(x)

Solution:

Let the integration of f(x) be I

So,

\longrightarrow\rm{I=\displaystyle\int{(sinx+e^{x})dx}}

\longrightarrow\rm\green{I=-cosx+e^{x}+c}

where, c is any constant

━━━━━━━━━━━━━━━━━━━━━━━━━

2)

Given:

A function

f(x)= x⁻³

To Find:

Integration of f(x)

Solution:

Let the integration of f(x) be I

So,

\longrightarrow\rm{I=\displaystyle\int{(x^{-3})dx}}

\longrightarrow\rm{I=\dfrac{x^{-3+1}}{-3+1}+c}

\longrightarrow\rm{I=\dfrac{x^{-2}}{-2}+c}

\longrightarrow\rm\green{I=\dfrac{-1}{2x^{2}}+c}

where, c is any constant

━━━━━━━━━━━━━━━━━━━━━━━━━

3)

Given:

A function

f(x)= 2x²

To Find:

Integration of f(x)

Solution:

Let the integration of f(x) be I

So,

\longrightarrow\rm{I=\displaystyle\int{(2x^{2})dx}}

\longrightarrow\rm{I=2\displaystyle\int{(x^{2})dx}}

\longrightarrow\rm{I=\dfrac{2x^{2+1}}{2+1}+c}

\longrightarrow\rm\green{I=\dfrac{2x^{3}}{3}+c}

where, c is any constant

━━━━━━━━━━━━━━━━━━━━━━━━━

Formulae to Remember

\longrightarrow\rm{\displaystyle\int{(x^{n})dx}=\dfrac{x^{n+1}}{n+1}+c}

\longrightarrow\rm{\displaystyle\int{(c.f(x))dx}=c\displaystyle\int{(f(x))dx}}

\longrightarrow\rm{\displaystyle\int{(sinx)dx}=-cosx+c}

\longrightarrow\rm{\displaystyle\int{(e^{x})dx}=e^{x}+c}

where, c is any constant

Answered by Anonymous
166

Answer -

1.

Given - sinx +  {e}^{x}

Formula used -

\longrightarrow\int f(x) + g(x) dx = \int f(x)dx + \int g(x)dx

Solution -

Let \longrightarrow f(x) = sinx

\longrightarrowg(x) =  {e}^{x}

\longrightarrow \int sinx = -cosx + c

\longrightarrow\int  {e}^{x} dx =  {e}^{x} + c

\longrightarrow\int f(x) + g(x) dx = - cosx + {e}^{x} + c

━━━━━━━━━━━━━━━━━━━━━━━━━━

2.

Given -  {x}^{ - 3}

Formula used -

\longrightarrow \int  {x}^{ n } dx =  \frac{ {x}^{n + 1} }{n + 1}

Solution -

\longrightarrow \int  {x}^{ - 3} =  \frac{ {x}^{ - 2} }{ - 2} + c

━━━━━━━━━━━━━━━━━━━━━━━━━━

3.

Given - 2 {x}^{2}

Formula used -

\longrightarrow  \int  {x}^{ n } dx =  \frac{ {x}^{n + 1} }{n + 1} + c

Solution -

\longrightarrow\int 2 {x}^{2} = 2  \times \frac{ {x}^{2 + 1} }{2 + 1}

\longrightarrow=  2 \times  \frac{ {x}^{3} }{3} + c

━━━━━━━━━━━━━━━━━━━━━━━━━━

ADDITIONAL INFORMATION -

\int dx = \int 1dx = x + c

\int sinx = -cosx + c

\int cosx = sinx + c

\int f(x) - g(x) dx=\int f(x)dx - \int g(x)dx

Thanks

Similar questions