1 + iota ki power 4 upon 1 minus iota cube whole power 4
Answers
Answered by
0
Answer ⇒ -4
Explanation ⇒ Given Question,
We know, i = √(-1)
∴ i² = -1 and thus, i⁴ = 1
∴ i³ = i².i = -i
Putting these values in question.
We will get, =
=
=
=
= -4
Hence, the value of the given expression is -4.
Hope it helps.
Answered by
0
Answer:
= -4
Step-by-step explanation:
Numerator
= (1 + i)⁴
= (( 1 + i)²)²
= ( 1 + i² + 2i)²
= (1 - 1 + 2i)²
= (2i)²
= 4 i²
= 4 (-1)
= -4
Denominator
(1 - i)³
= (1 -i)³ (1 - i)/(1-i)
= (1 -i)⁴/(1-i)
= ((1 -i)²)²/(1-i)
= (1 + i² - 2i)²/(1 - i)
= 4i²/(1-i)
= -4/(1 - i)
Numerator /Denominator = (1 - i)
(1 -i)⁴
= ((1 -i)²)²
= (i² + 1 - 2i)²
= 4i²
= -4
= (( 1 - i)²)²
= ( 1 + i² - 2i)²
= (-2i)²
= 4i²
= -4
Similar questions