1) iv. If 7Sin^2theta + 3 Cos^2theta = 4 then prove that tan theta = 1 / √3
Class 10
Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
5
7.sin²θ + 3.cos²θ = 4
7.sin²θ + ౩( 1 - sin²θ ) = 4
4.sin²θ + 3 = 4 ; 4.sin²θ = 1
sin²θ = 1/4
sin θ = + 1/2 ; θ = π/6 ; θ = π/3
Therefore , tan θ = 1/√3
7.sin²θ + ౩( 1 - sin²θ ) = 4
4.sin²θ + 3 = 4 ; 4.sin²θ = 1
sin²θ = 1/4
sin θ = + 1/2 ; θ = π/6 ; θ = π/3
Therefore , tan θ = 1/√3
Anonymous:
Nice ^_^
Answered by
8
Method - 1:
Given : 7sin^2A + 3cos^2A = 4.
= > 7 sin^2A + 3cos^2A = 4 * 1
= > 7sin^2A + 3cos^2A = 4(sin^2A + cos^2A)
= > 7sin^2A + 3cos^2A = 4sin^2A + 4cos^2A
= > 7sin^2A - 4sin^2A = 4cos^2A - 3cos^2A
= > 3sin^2A = cos^2A
= > 3 sin^2A = cos^2A
= > cos^2A/sin^2A = 3.
= > cot^2A = 3
We know that tanA = (1/cotA)
----------------------------------------------------------------------------------------------------------------
Method 2:
= > A = 30.
Now,
---------------------------------------------------------------------------------------------------------------
Hope this helps!
Similar questions