Math, asked by ypureti, 9 months ago

1) Let A,B and C are three matrices of the
same order such that any two are symmetric
and third one is skew symmetric if X=ABC+
CBA and Y= ABC-CBA then (XY) transpose is​

Answers

Answered by Swarup1998
2

Matrix

Formula:

  • If A be a symmetric matrix, then A^{T}=A.

  • If A be a skew-symmetric matrix, then A^{T}=-A.

  • (A+B)^{T}=A^{T}+B^{T}

  • (kA)^{T}=kA^{T}, where k is a scalar.

  • (ABC)^{T}=C^{T}B^{T}A^{T}

Solution:

Let us take A,\:B being symmetric matrices and C being a non-symmetric matrix.

Then A^{T}=A,\:B^{T}=B,\:C^{T}=-C

Given, X=ABC+CBA,\:Y=ABC-CBA

\therefore (XY)^{T}

=Y^{T}X^{T}

=(ABC-CBA)^{T}\:(ABC+CBA)^{T}

=\{(ABC)^{T}-(CBA)^{T}\}\:\{(ABC)^{T}+(CBA)^{T}\}

=(C^{T}B^{T}A^{T}-A^{T}B^{T}C^{T})\:(C^{T}B^{T}A^{T}+A^{T}B^{T}C^{T})

=(-CBA+ABC)\:(-CBA-ABC)

=-(ABC-CBA)\:(ABC+CBA)

=-YX

\Rightarrow \boxed{(XY)^{T}=-YX}

Read more on Brainly.in

Given f(x) = x^{2}-5x+ 6. Find f(A) if

\quad\quadA=\left(\begin{array}{ccc}2&0&1\\2&1&3\\1&-1&0\end{array}\right).

https://brainly.in/question/3052617

Similar questions