1) Let us Prove that, the sum of squares drawn on the sides of a rhombus is equal to the sum of squares drawn on two diagonals .
Answers
Answered by
61
Answer:
Given :-
- ABCD is a rhombus.
To Prove :-
- AB²+ BC²+ CD²+ DA² = AC²+ BD²
Proof :- We know that diagonals of a rhombus bisected each other at right angle.
i.e., AC BD and AO = OC and BO = OD
So, in the right angled triangle ∆AOB, ∆BOC, ∆COD and ∆DOA.
Hence, we get,
➛ AB²= OA²+ OB²,
➛ BC² = OB²+ OC²,
➛ CD²= OC²+ OD²
➛ AD²= OD²+ OA²
Then,
➡ AB²+ BC²+ CD²+ DA²
⇒ OA²+ OB²+OB²+ OC²+ OC²+ OD² + OD²+ OA².
⇒ 2( OA²+ OB²+ OC²+ OD²)
⇒ 2( 2OA²+ 2OB²)
⇒ 4( OA²+ OB²)
Again,
➡ AC² + BD²
↦ (2OA)² + (2OB)²
↦ 4OA² + 4OB²
↦ 4(OA² + OB²)
∴ AB² + BC² + CD² + DA² = AC² + BD² (PROVED)
Attachments:
Similar questions