Math, asked by tabithaysagar, 1 day ago

1 % log 8 2 + 1 %log 4 2​

Attachments:

Answers

Answered by anindyaadhikari13
5

SOLUTION:

We have to evaluate the given logarithm.

 \rm =  \dfrac{1}{ \log_{8}(2) } +  \dfrac{1}{ \log_{4}(2) }

We know that:

 \rm \longrightarrow \log_{a}(b)  =  \dfrac{1}{ \log_{b}(a) }

Using this formula, we will get:

 \rm = \log_{2}(8) + \log_{2}(4)

 \rm = \log_{2}( {2}^{3} ) + \log_{2}( {2}^{2} )

 \rm = 3\log_{2}( 2 ) + 2\log_{2}(2 )

 \rm = 3 \times 1 + 2 \times 1

 \rm = 3 + 2

 \rm = 5

Therefore:

 \rm \longrightarrow  \dfrac{1}{ \log_{8}(2) } +  \dfrac{1}{ \log_{4}(2) }  = 5

LEARN MORE:

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions