Math, asked by mangradi, 11 months ago

1/log base a power abc+1/log base b abc + 1/log base c power abc =1​

Answers

Answered by ihrishi
12

Step-by-step explanation:

\frac{1}{log_a \: abc}  +  \frac{1}{log_b \: abc}  + \frac{1}{log_c \: abc}   = 1 \\  LHS \\  =  \frac{1}{log_a \: abc}  +  \frac{1}{log_b \: abc}  + \frac{1}{log_c \: abc}  \\    = \frac{1}{ \frac{log \: abc}{log \: a} }  + \frac{1}{ \frac{log \: abc}{log \: b} }  +\frac{1}{ \frac{log \: abc}{log \: c} }   \\    = \frac{log \: a}{log \: abc}  +  \: \frac{log \: b}{log \: abc} +  \frac{log \: c}{log \: abc}  \\   = \frac{log \: a + log \: b \:  + log \: c}{log \: abc}   \\  =  \frac{log \: abc}{log \: abc}  \\  =  \: 1 \\  = RHS

Answered by PrajienVinayCA
1

Answer:

answer is proved

Step-by-step explanation:

answer is 1

hence answer is proved

Attachments:
Similar questions