1/log10 base x +2 = 2/log 10 base 5 find the value of x
Answers
Given:
1/log10 base x +2 = 2/log 10 base 5
To find:
Find the value of x
Solution:
From given, we have,
1/log10 base x + 2 = 2/log 10 base 5
let log10 base x = u, so we have,
1/u + 2 = 2/log 10 base 5
u = - log 10 base 5/2(log 10 base 5 - 1)
again back substituting the value of u, we get,
log10 base x = - log 10 base 5/2(log 10 base 5 - 1)
⇒ 1/logx base 10 = - log 10 base 5/2(log 10 base 5 - 1)
2(log 10 base 5 - 1) = - log 10 base 5 × logx base 10
2(log 10 base 5 - 1) = - ln x / ln 5
2(log 10 base 5 - 1) ln 5 = - ln x
ln x = - 2(log 10 base 5 - 1) ln 5
x = e^ {- 2(log 10 base 5 - 1) ln 5}
x = [ e^{ln 5} ]^{- 2(log 10 base 5 - 1)}
x = 5^{- 2(log 10 base 5 - 1)}
x = 1/{5^2} ^{log 10 base 5 - 1}
x = 1/25 ^{log 10 base 5 - 1}
x = 1/25^{-1} × 1/25^{log 10 base 5}
x = 1/25^{-1} × (1/5^2)^{log 10 base 5}
x = 1/25^{-1} × 1/10^2
x = 25/100
∴ x = 1/4
In terms of mathematical expressions: