Math, asked by malharjadhav2005, 19 days ago

1/(log4 6) + 1/(log9 6)​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

The given expression is

\rm \: \dfrac{1}{ log_{4}(6) }  + \dfrac{1}{ log_{9}(6) }

We know,

\boxed{\tt{  \:  \:  log_{x}(y) =  \frac{1}{ log_{y}(x) } \:  \: }} \\

So, using this result, given expression can be rewritten as

\rm \:  =  \:  log_{6}(4) +  log_{6}(9)

We know

\boxed{\tt{  \:  log_{m}(x) +  log_{m}(y) \:  =  \:  log_{m}(xy) \: }} \\

So, using this result, we get

\rm \:  =  \:  log_{6}(9 \times 4)

\rm \:  =  \:  log_{6}(36)

\rm \:  =  \:  log_{6}(6 \times 6)

\rm \:  =  \:  log_{6}( {6}^{2} )

We know

\boxed{\tt{  \:  log_{a}( {a}^{x} ) = x \: }} \\

So, using this result, we get

\rm \:  =  \: 2

Hence,

\rm\implies \:\boxed{\tt{  \: \rm \: \dfrac{1}{ log_{4}(6) }  + \dfrac{1}{ log_{9}(6) }  = 2 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ logx - logy = log \frac{x}{y} \: }} \\

\boxed{\tt{ log {x}^{y} = y \: logx \: }} \\

\boxed{\tt{  log_{x}(x) = 1 \: }} \\

\boxed{\tt{  log_{ {x}^{a} }( {x}^{b} ) =  \frac{b}{a}  \: }} \\

\boxed{\tt{  log_{ {x}^{a} }( {y}^{b} ) =  \frac{b}{a} log_{x}(y)   \: }} \\

\boxed{\tt{  {a}^{ log_{a}(x) } = x \: }} \\

\boxed{\tt{  {a}^{ ylog_{a}(x) } =  {x}^{y}  \: }} \\

\boxed{\tt{  {x}^{y} = z \:  \: \rm\implies \:y =  log_{x}(z) \: }} \\

\boxed{\tt{  \: log1 = 0 \: }} \\

Similar questions