1. (log5 3) (log2 625) equals
Answers
Answered by
1
Answer:
The value of \log_2 (\log_5 625)=2log2(log5625)=2 .
Step-by-step explanation:
We have,
\log_2 (\log_5 625)log2(log5625)
To find, the value of \log_2 (\log_5 625)=?log2(log5625)=?
∴ \log_2 (\log_5 625)log2(log5625)
=\log_2 (\log_5 5^{4} )=log2(log554)
=\log_2 (4\log_5 5)=log2(4log55)
[ ∵ \log a^{m}=m\log alogam=mloga
=\log_2 (4\times 1)=log2(4×1)
[ ∵\log_a a=1logaa=1
=\log_2 2^{2}=log222
=2\log_2 2=2log22
=2\times 1=2=2×1=2
Hence, the value of \log_2 (\log_5 625)=2log2(log5625)=2 .
Similar questions