Math, asked by ss23072003, 1 month ago


(1)/(logab)(abc))+(1)/(logbc)(abc))+(1)/(log(ca)(abc))is equal to ​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ log_{ab}(abc) }  + \dfrac{1}{ log_{bc}(abc) }  + \dfrac{1}{ log_{ca}(abc) }

We know,

\boxed{ \bf{ \:  log_{a}(b) =  \frac{logb}{loga}}}

So, using the above can be rewritten as

\rm \:  =  \:  \: \dfrac{1}{\dfrac{logabc}{logab} } + \dfrac{1}{\dfrac{logabc}{logbc} } + \dfrac{1}{\dfrac{logabc}{logca} }

\rm \:  =  \:  \: \dfrac{logab}{logabc} + \dfrac{logbc}{logabc}  + \dfrac{logca}{logabc}

\rm \:  =  \:  \: \dfrac{logab + logbc + logca}{logabc}

We know,

\boxed{ \bf{ \: logx + logy = logxy}}

So, using this we get

\rm \:  =  \:  \: \dfrac{log(ab \times bc \times ca)}{logabc}

\rm \:  =  \:  \: \dfrac{log {a}^{2}  {b}^{2}  {c}^{2} }{logabc}

\rm \:  =  \:  \: \dfrac{log {(abc)}^{2} }{logabc}

We know,

\boxed{ \bf{ \:  log( {x}^{y} ) = y \: logx}}

So, using this, we get

\rm \:  =  \:  \: \dfrac{2 \: logabc}{logabc}

\rm \:  =  \:  \: 2

Hence,

\boxed{ \bf{ \: \rm :\longmapsto\:\dfrac{1}{ log_{ab}(abc) }  + \dfrac{1}{ log_{bc}(abc) }  + \dfrac{1}{ log_{ca}(abc) }  = 2}}

Additional Information :-

\boxed{ \bf{ \:  log_{x}(x) = 1}}

\boxed{ \bf{ \:  log_{ {x}^{a} }( {x}^{b} ) =  \frac{b}{a} }}

\boxed{ \bf{ \:  {a}^{ log_{a}(x) }  = x}}

\boxed{ \bf{ \:  {a}^{y log_{a}(x) }  =  {x}^{y} }}

\boxed{ \bf{ \:  {e}^{logx} = x}}

\boxed{ \bf{ \:  {e}^{ylogx} =  {x}^{y} }}

\boxed{ \bf{ \: log1 = 0}}

Similar questions