Math, asked by vedanth145gmailcom, 5 months ago

1.मुझे और स्पष्टीकरण की जरूरत है, तभी मैं समझ सकता हूं

2.गलत जवाब चटाई करते हैं

Question :- Class | 500 - 600 | 600-700 | 700-800 | 800-900 | 900-1000|


Frequency | 36. | 32 | 32. | 20. | 30. |
Find the median

Answers

Answered by MathWizzMan
108

\begin{gathered}\begin{gathered}\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6} \tt Class & \tt 500-600 & \tt 600-700 & \tt 700-800 & \tt 800-900 & \tt 900-100 \\\cline{1-6}\tt Frequency &\tt 36 & \tt 32& \tt 32 & \tt 20 & \tt 30 \\\cline{1-6}\end{tabular}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

We have to find, Median of given distribution.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\boxed{\begin{array}{cccc}\bf Class\: interval&\bf Frequency\: (f)& \bf C.F\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 500 - 600&\sf 36&\sf 36\\\\\sf 600 - 700 &\sf 32&\sf 68\\\\\sf 700-800 &\sf 32&\sf 100\\\\\sf 800 - 900&\sf 20&\sf 120\\\\\sf 900-1000&\sf 30&\sf 150\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\bf & \bf \sum f = 150& \end{array}}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Formula\;to\:find\;Median,}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{l = \dfrac{ \frac{n}{2} - C.F.}{f} \times h}}}}

⠀⠀⠀⠀⠀⠀⠀

Firstly we have to calculate \sf \dfrac{n}{2}2n , (where N = \sf \sum F∑F ) = \sf \dfrac{150}{2} = \bf{75}.2150=75.

⠀⠀⠀⠀⠀⠀⠀

So, The value of comulative frequency just greater than or equal to 75 is 100.

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{We\;know\;that,}}}

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here: \\1)\:n = \sum f =150\\2)\:l=Lower\:limit\:of\:median\:class=700\\3)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=68\\4)\:f= frequency\:of\:median\:class=32\\5)\:h= Class\:interval =700-800 = 100\end{minipage}}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Putting\;values\;in\;formula\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\implies\sf 700 + \dfrac{ \frac{150}{2} - 68}{32} \times 100

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 700 + \dfrac{ 75 - 68}{32} \times 100

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 700 + \dfrac{7}{32} /times 100

:\implies\sf 700 + 21.872

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\frak{\purple{721.875}}}}}

⠀⠀⠀⠀⠀⠀⠀

\therefore\;{\underline{\sf{Median\;of\;given\; distribution\;is\; \textbf{721.875}}}}

Answered by TheBrainlyopekaa
4
Molecular mass=2*vapour density

Molecular mass=2*vapour density =2*11.2

Molecular mass=2*vapour density =2*11.2=22.4 g

Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,

Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,volume occupied by 22.4 g of gas= 22.4 l

Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,volume occupied by 22.4 g of gas= 22.4 lvolume of 11.2g gas = 22.4/22.4*11.2

Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,volume occupied by 22.4 g of gas= 22.4 lvolume of 11.2g gas = 22.4/22.4*11.2= 11.2 l\huge{\boxed{\bold{Question}}}\huge\mathbb\red{Theopekaaleader}
Similar questions