1 mole of a monatomic and 2 mole of a diatomic gas are mixes the resulting gas is taken through a process in which
Answers
Answer:
ΔQ=ΔU+ΔW (Using First law of thermodynamics)ΔQ=ΔU+ΔW (Using First law of thermodynamics)
dQ=dU+dWdQ=dU+dW
ncdT=ncvdT+PdVncdT=ncvdT+PdV
c=cv+dVdTPn ⋯(i)c=cv+dVdTPn ⋯(i)
Also,Also,
PV=nRT ⋯(ii) and PT2V=k (Constant)⋯(iii)PV=nRT ⋯(ii) and PT2V=k (Constant)⋯(iii)
putting equation(iii) in equation(ii),putting equation(iii) in equation(ii),
kVT2V=nRTkVT2V=nRT
kV2=nRT3kV2=nRT3
Differentiating it we get,Differentiating it we get,
2VkdVdT=3nRT2⋯(iv)2VkdVdT=3nRT2⋯(iv)
putting equation(iv) in equation(i),putting equation(iv) in equation(i),
c=cv+3nRT22VkPnc=cv+3nRT22VkPn
c=cv+(32)(RT2PVk)c=cv+(32)(RT2PVk)
But PT2V=k,But PT2V=k,
c=cv+(32)(RVkVk)c=cv+(32)(RVkVk)
c=R2/5+3R2c=R2/5+3R2
c=4Rc=4R
Answer:ΔQ=ΔU+ΔW (Using First law of thermodynamics)ΔQ=ΔU+ΔW (Using First law of thermodynamics)
dQ=dU+dWdQ=dU+dW
ncdT=ncvdT+PdVncdT=ncvdT+PdV
c=cv+dVdTPn ⋯(i)c=cv+dVdTPn ⋯(i)
Also,Also,
PV=nRT ⋯(ii) and PT2V=k (Constant)⋯(iii)PV=nRT ⋯(ii) and PT2V=k (Constant)⋯(iii)
putting equation(iii) in equation(ii),putting equation(iii) in equation(ii),
kVT2V=nRTkVT2V=nRT
kV2=nRT3kV2=nRT3
Differentiating it we get,Differentiating it we get,
2VkdVdT=3nRT2⋯(iv)2VkdVdT=3nRT2⋯(iv)
putting equation(iv) in equation(i),putting equation(iv) in equation(i),
c=cv+3nRT22VkPnc=cv+3nRT22VkPn
c=cv+(32)(RT2PVk)c=cv+(32)(RT2PVk)
But PT2V=k,But PT2V=k,
c=cv+(32)(RVkVk)c=cv+(32)(RVkVk)
c=R2/5+3R2c=R2/5+3R2
c=4Rc=4R
Explanation: