Math, asked by venkatarambabup1k2lk, 1 year ago

[1+msq]xsq+[2mc]x+[csq-asq]=0 if this eqution has equal roots ,then prove that csq=asq[1+msq] please answer this


siddhartharao77: is it (1 + m^2)x^2 + (2mcx) + (c^2 - a^2) = 0?
manavgarg1: cant say
siddhartharao77: Its my mistake. I don't have brain to understand this question.
manavgarg1: no probs
siddhartharao77: ...............

Answers

Answered by Anonymous96
4
 Given equation is:

(1 + m 2) x 2 + 2mcx + (c 2 – a 2) = 0

To prove: c 2 = a 2 (1 + m 2)

Proof: It is being given that equation has equal roots, therefore

D = b 2 – 4ac = 0 ... (1)

From the above equation, we have

a = (1 + m 2)

b = 2mc

and c= (c 2 – a 2)

Putting values of a, b and c in (1), we get

D = (2mc)2 – 4 (1 + m 2) (c 2 – a 2) = 0

⇒ 4m 2 c 2 – 4 (c 2 + c 2 m 2 – a 2 – a 2 m 2) = 0

⇒ 4m 2 c 2 – 4c 2 – 4c 2 m 2 + 4a 2 + 4a 2 m 2= 0

⇒ – 4c 2 + 4a 2 + 4a 2 m 2 = 0

⇒ 4c 2 = 4a 2 + 4a 2 m 2

⇒ c 2 = a 2 + a 2 m 2

⇒ c 2 = a 2 (1 + m 2)

[Hence proved]

Answered by manavgarg1
3
(1 + m 2) x 2 + 2mcx + (c 2 – a 2) = 0

To prove: c 2 = a 2 (1 + m 2)

Proof: It is being given that equation has equal roots, therefore

D = b 2 – 4ac = 0 ... (1)

From the above equation, we have

a = (1 + m 2)

b = 2mc

and c= (c 2 – a 2)

Putting values of a, b and c in (1), we get

D = (2mc)2 – 4 (1 + m 2) (c 2 – a 2) = 0

⇒ 4m 2 c 2 – 4 (c 2 + c 2 m 2 – a 2 – a 2 m 2) = 0

⇒ 4m 2 c 2 – 4c 2 – 4c 2 m 2 + 4a 2 + 4a 2 m 2= 0

⇒ – 4c 2 + 4a 2 + 4a 2 m 2 = 0

⇒ 4c 2 = 4a 2 + 4a 2 m 2

⇒ c 2 = a 2 + a 2 m 2

⇒ c 2 = a 2 (1 + m 2)

[Hence proved]

If it helps u PLZ MARK AS BRAINLIEST

venkatarambabup1k2lk: thanks alot
manavgarg1: hay can u tell some of questions u asked
manavgarg1: in inbox
venkatarambabup1k2lk: what
manavgarg1: plz tell the questions u asked till now
venkatarambabup1k2lk: but y i got those answers
Similar questions