English, asked by vaddadisaitarun, 4 months ago

1, mysteriously istrayely (. )

2, foot prints a series of muddy(. )

3, managed to turn on the washing machine(. )

4, good I was being(. )

5, self raise to managed(. )


3 rd bit
state the given sentences true / fasle

Answers

Answered by itzpikachu76
0

Explanation:

\huge \fbox \red{\fbox{Answer}}

Answer

\large \bf{Given:}Given:

\sf \mapsto{Mass \: of \: baby(m)=500g= \frac{500}{1000} kg = 0.5kg}↦Massofbaby(m)=500g=

1000

500

kg=0.5kg

\sf \mapsto{Initial \: velocity(u)=54km/h=54 \times \frac{5}{18} m/s = 15m/s}↦Initialvelocity(u)=54km/h=54×

18

5

m/s=15m/s

\sf \mapsto{Time \: taken(t)=6sec}↦Timetaken(t)=6sec

\large \bf{To \: find:}Tofind:

\sf \leadsto{Force \: acting \: on \: baby. }⇝Forceactingonbaby.

\large \bf{Concept \: used:}Conceptused:

\sf \rightarrow{Final \: velocity(v) \: of \: baby \: is \: 0m/s.}→Finalvelocity(v)ofbabyis0m/s.

\large \bf{Formula \: used:}Formulaused:

\boxed {\bf{Acceleration \: of \: baby(a) = \frac{Final \: velocity - Initial \: velocity}{Time} = \frac{v - u}{t} }}

Accelerationofbaby(a)=

Time

Finalvelocity−Initialvelocity

=

t

v−u

\boxed {\bf{Force=Mass×Acceleration = ma}}

Force=Mass×Acceleration=ma

\large \bf{According \: to \: Question:}AccordingtoQuestion:

\sf \implies{Acceleration \: of \: baby(a) = \frac{Final \: velocity - Initial \: velocity}{Time} = \frac{v - u}{t} }⟹Accelerationofbaby(a)=

Time

Finalvelocity−Initialvelocity

=

t

v−u

\sf \implies{Acceleration \: of \: baby(a) = \frac{0- 15}{6} = \frac{- 15}{6} = - 2.5m/ {s}^{2} }⟹Accelerationofbaby(a)=

6

0−15

=

6

−15

=−2.5m/s

2

\bf{Then,}Then,

\sf \implies{Force=Mass×Acceleration}⟹Force=Mass×Acceleration

\sf \implies{Force=0.5×2.5=1.25N}⟹Force=0.5×2.5=1.25N

\bf{Hence, Force \: acting \: on \: baby \: is \: 1.25 \: newton.}Hence,Forceactingonbabyis1.25newton.

__________________________________________________________

1 { { { <  \geqslant  \binom{ \binom{ log_{ log_{ \gam \beta  \beta  ln( ln( \alpha  \alpha  \alpha  \beta  \beta  \beta  \beta ) ) ma  \tan(?) }(?) }(?) }{?}  \gamma  \gamma  \gamma  log_{\%}(?) }{?} }^{?} }^{?} }^{?}

Answered by sonuprayag1
0

Answer:

Above answer is correct in my opinion, bro or sis.

Similar questions