Math, asked by aayu82842, 18 days ago

1) OA= 10cm AB= 12cm OCLAB Find - CD=​

Answers

Answered by sarahssynergy
0

Given:

  • Distance from point A to the origin O is 10cm.
  • Distance from point B to point A is 12cm.
  • Distance from origin O to point C is perpendicular to distance from point A to point B

To Find: Distance between point C and point D?

As the distance between origin O to point C and point A to point B is perpendicular then,

                                        AC = AB

(perpendicular from the centre to the chord always bisects the chord)

                             ∴         AC = \frac{AB}{2}

                                                = \frac{12}{2} = 6cm

In right Δ OCA,

                                            OA^{2} = AC^{2} + OC^{2}

                                            (10^{2} ) = 6^{2} + OC^{2}

                                          (OC^{2} ) = 100 - 36

                                             OC^{2} = 64

                                              OC = \sqrt{64}

                                              OC = 8cm

Now to find CD,

                                        CD = OD - OC

                                               = 10 - 8

                                               = 2cm

                           ∴      OA = OD = 10cm (radii}

Hence the distance from point C to Point D (CD) is 2cm.

Similar questions