Math, asked by arnav8764, 11 months ago

1/p+ 1 / q + 1 / x is equal to 1 / x+ p + q take :(1 / p+ 1 / q)+ (1 / X - 1 / X + P + Q)=0 solve the quadratic ​

Attachments:

Answers

Answered by Anonymous
18

Given equation,

 \sf{ \frac{1}{p} +  \frac{1}{q} +  \frac{1}{x} =  \frac{1}{p + q + x}    } \\  \\

To find the roots of the equation,

On transposing,

 \sf{ \frac{1}{p}  +  \frac{1}{q} =  \frac{1}{p + q + x}  -  \frac{1}{x} }  \\  \\  \implies \: \sf { \frac{p + q}{pq} =  \frac{x - (p + q + x)}{x(p + q + x)} }  \\  \\  \implies \:  \sf{ \frac{p + q}{pq} =  \frac{ - (p + q)}{x {}^{2}  + px + qx}  } \\  \\  \implies \:  \sf{ \frac{1}{pq} =  \frac{ - 1}{x {}^{2} + px + qx }  } \\  \\  \implies \:  \sf{x {}^{2} + px + qx  = - pq } \\  \\  \implies \:  \sf{x {}^{2} + px + qx + pq = 0 } \\  \\  \implies \:  \sf{x(x + p) + q(x + p) = 0} \\  \\  \implies \:  \sf{(x + p)(x + q) = 0} \\  \\  \implies \: \:  \huge{\boxed{{\sf{x =   - p \:  \: or \:  \:  - q }}}}

The zeros of the equation are -p and -q


arnav8764: thank you
Anonymous: Your welcome
BrainlyElegantdoll: Well done Bruh♥️
Anonymous: Thank you @BrainlyElegantdoll
BrainlyElegantdoll: Mah Pleasure Bruh❤️
Similar questions