1.(ক) P =7 তকৈ সৰু মৌলিক সংখ্যাৰে সংহতি। সংজ্ঞাবদ্ধ পদ্ধতিত লিখা। (খ) U=? (গ) a,x + by + C = 0 আৰু apk + by + C = 0 সমীৰকৰণ দুটা কি চর্তত সংগত আৰু একক সমাধান হ'ব ? (ঘ) 23 x 25 = ? (ঙ) /// সূচকীয় ৰূপত প্ৰকাশ কৰা । (চ) logo 1 = ? 1 (ছ) ঘাতংক ৰূপত লিখা 33 = 27 (জ) সূচকীয় ৰূপত লিখা log, 128 =7 (ঝ) 2 মৌলটো (2,7) ৰ অন্তর্ভক্ত হয়নে? (ঞ) বন্ধ অন্তৰাল কি? সংখ্যাৰেখাৰ সহায়ত লিখা। = ? Section B 2X10 ২. সংহতিৰ দুটা উদাহৰণ দিয়া সসীম সংহতি আৰু একক সংহতিৰ প্রত্যেকৰে দুটাকৈ উদাহৰণ দিয়া।
Answers
Step-by-step explanation:
Math problems and solutions.
Md Jasim
a) Integration with primes smaller than P =7. Writing in a defined manner. (b) U=? (c) Under what conditions will the equations a,x + by + C = 0 and apk + by + C = 0 be compatible and unique solutions? (d) 23 x 25 = ? (e) /// Express in exponential form. (f) logo 1 = ? 1 (g) Write in exponent form 33 = 27 (h) Write in exponential form log, 128 =7 (i) Does the element 2 belong to (2,7)? (j) What is a closed interval? Write with number lines. = ? Section B 2X1 Give two examples of integration Give two examples of each of finite integration and unit integration
a) ∫[0,7] f(x)dx
b) U stands for "universal set", which is the set that contains all possible elements relevant to a given context.
c) The two equations will be compatible and have unique solutions if and only if k is not a multiple of 7, or if b is not equal to 0 and a is not equal to kp for any integer p.
d) 23 x 25 = 575
e) Sorry, there is no expression provided for me to convert to exponential form.
f) log₁ = 0
g) 33 = 3³
h) 128 = 7²⁺¹
i) Yes, 2 belongs to the set (2,7).
j) A closed interval is a set of numbers that includes its endpoints. It can be represented on a number line as a solid line connecting the two endpoints. For example, [2,7] would represent the interval of all numbers between and including 2 and 7.
Examples of integration:
1.∫(x² + 3x - 2)dx
2.∫sin(x)dx
Examples of finite integration:
1.∫[0,1] x²dx
2.∫[-5,5] e⁻ˣ dx
Examples of unit integration:
∫δ(x)dx (where δ is the Dirac delta function)
∫u(t)dt (where u is the unit step function)