Math, asked by ramyasiva36, 9 months ago

1/p+q+x=1/p+1/q+1/x solve for x by factorization method

Answers

Answered by Unni007
5

Given \frac{1}{p}+\frac{1}{q}+\frac{1}{x}=\frac{1}{p+q+x}

\implies\bold{\frac{1}{p}+\frac{1}{q}=\frac{1}{p+q+x}-\frac{1}{x}}

\implies\bold{\frac{q+p}{pq}=\frac{x-(p+q+x)}{x(p+q+x)}}

\implies\bold{\frac{p+q}{pq}=\frac{-(p+q)}{x(p+q+x)}}

\implies\bold{\frac{1}{pq}=\frac{-1}{x(p+q+x)} (Since,\:p+q \not= 0)}

\implies\bold{x(p+q+x)=-pq}

\implies\bold{px+qx+x^2+pq=0}

\implies\bold{x^2+px+qx+pq=0}

\implies\bold{x ( x + p ) + q ( x + p ) = 0}

\implies\bold{( x + p ) . ( x + q ) = 0}

\boxed{\bold{\therefore(x + p = 0)\:\: OR \:\:(x + q = 0)}}

Similar questions