Math, asked by sapnayadav1760037, 7 months ago

1 point
Q.20: The value of x and y of pair of
equations : 3x - y = 3 and 9x - 3y = 9
are :-
0 Infinity
0 1,1
0 -3,3
O 0,0​

Answers

Answered by Anonymous
16

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow 9x-3y=9  -------eq^1

\sf\dashrightarrow 3x - y = 3  ----------eq^2

METHOD IN USE,

\sf\large\dashrightarrow\underline ELIMINATION \:BY\:SUBSTITUTING,

\large\underline\bold{SOLUTION,}

\sf\therefore 9x-3y=9  --eq^1

\sf\therefore 3x - y = 3  --eq^2

TAKING EQUATION 2 ,

\sf\implies 3x - y = 3

\sf\implies 3x = 3 + y 

\sf\implies x =  \dfrac{3 + y}{3}---eq^3

SUBSTITUTING VALUE OF X (EQUATION 3) IN EQUATION 1,

WE GET,

\sf\implies 9 \times \dfrac{3 + y}{3}  - 3y = 9

\sf\implies \dfrac{27+9y}{3} -3y =9

\sf\implies \dfrac{27-9y-9y}{3}=9

\sf\implies  \dfrac{\cancel{9}(3-1y-1y)}{\cancel{3}}=9

\sf\implies 3(3-2y)=9

\sf\implies 3-2y= \dfrac{9}{3}

\sf\implies 3-2y= \cancel\dfrac{9}{3}

\sf\implies3-2y= 3

 \sf\implies 2y=0

\sf\implies y=0

\rm{\boxed{\bf{ y=0}}}

now,

SUBSTITUTING THE VALUE OF Y IN EQUATION 3,

\sf\implies x =  \dfrac{3 + y}{3}

\sf\implies x= \dfrac{3 + 0}{3}

\sf\implies x= \dfrac{3}{3}

\sf\implies x= \cancel \dfrac{3}{3}

\sf\implies x=1

\rm{\boxed{\bf{ x=1}}}

\large\underline\bold{hence, x=1 \:and\:y=0}

_________________________

Answered by ItzCaptonMack
0

\huge\underline{\underline{\bold{\green{AnSwEr}}}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow 9x-3y=9  -------eq^1

\sf\dashrightarrow 3x - y = 3  ----------eq^2

METHOD IN USE,

\sf\large\dashrightarrow\underline ELIMINATION \:BY\:SUBSTITUTING,

\large\underline\bold{SOLUTION,}

\sf\therefore 9x-3y=9  --eq^1

\sf\therefore 3x - y = 3  --eq^2

TAKING EQUATION 2 ,

\sf\implies 3x - y = 3

\sf\implies 3x = 3 + y 

\sf\implies x =  \dfrac{3 + y}{3}---eq^3

SUBSTITUTING VALUE OF X (EQUATION 3) IN EQUATION 1,

WE GET,

\sf\implies 9 \times \dfrac{3 + y}{3}  - 3y = 9

\sf\implies \dfrac{27+9y}{3} -3y =9

\sf\implies \dfrac{27-9y-9y}{3}=9

\sf\implies  \dfrac{\cancel{9}(3-1y-1y)}{\cancel{3}}=9

\sf\implies 3(3-2y)=9

\sf\implies 3-2y= \dfrac{9}{3}

\sf\implies 3-2y= \cancel\dfrac{9}{3}

\sf\implies3-2y= 3

 \sf\implies 2y=0

\sf\implies y=0

\rm{\boxed{\bf{ y=0}}}

now,

SUBSTITUTING THE VALUE OF Y IN EQUATION 3,

\sf\implies x =  \dfrac{3 + y}{3}

\sf\implies x= \dfrac{3 + 0}{3}

\sf\implies x= \dfrac{3}{3}

\sf\implies x= \cancel \dfrac{3}{3}

\sf\implies x=1

\rm{\boxed{\bf{ x=1}}}

\large\underline\bold{hence, x=1 \:and\:y=0}

_________________________

Similar questions