CBSE BOARD XII, asked by darshanraikar2003, 5 months ago

+1
Proove that tanio
Coto ti
tan ² o​

Answers

Answered by NewGeneEinstein
9

Explanation:

To prove:-

\bf (1+tan15°)(1+tan30°)=2

Proof:-

We know that

\boxed{\bf 15°+30°=45°}\\ \\

\sf{:}\implies tan (15°+30°)=tan45°\\ \\

\sf{:}\implies \dfrac {tan15°+tan30°}{1-tan15°.tan30°}=1 \\ \\

\sf{:}\implies tan15°+tan30°=1-tan15°.tan30°\\ \\

\sf{:}\implies tan15°+tan30°+tan15°.tan30°=1 \\ \\

\sf{:}\implies 1+tan15°+tan30°+tan15°.tan30°=1+1 \\ \\

\sf{:}\implies 1+tan15°+tan30°+tan15°.tan30°=2 \\ \\

\sf{:}\implies 1 (1+tan15°)+tan30°(1+tan15°)=2 \\ \\

\sf{:}\implies (1+tan15°)(1+tan30°)=2\\ \\

\therefore{\huge{ \bf{(Proved)}}}

Similar questions