1.Prove :
(1 - sin A)/(1 + sin A) = (sec A - tan A)2
2.Prove :
(tan θ + sec θ - 1)/(tan θ - sec θ + 1) = (1 + sin θ)/cos θ
Answers
Question ❶:
Let A = (1 - sin A)/(1 + sin A) and B = (sec A - tan A)².
↠A = (1 - sin A) / (1 + sin A)
↠A = (1 - sin A)² / (1 - sin A) (1 + sin A)
↠A = (1 - sin A)² / (1 - sin²A)
↠A = (1 - sin A)² / (cos²A)
↠A = (1 - sin A)² / (cos A)²
↠A = {(1 - sin A) / cos A}²
↠A = {(1/cos A) - (sin A/cos A)}²
↠A = (sec A – tan A)²
↠A = B (Proved)
Question ❷:
Let A = (tan θ + sec θ - 1)/(tan θ - sec θ + 1) and
B = (1 + sin θ)/cos θ.
↠A = (tan θ + sec θ - 1)/(tan θ - sec θ + 1)
↠A = [(tan θ + sec θ) - (sec2θ - tan2θ)]/(tan θ - sec θ + 1)
↠A = {(tan θ + sec θ) (1 - sec θ + tan θ)}/(tan θ - sec θ + 1)
↠A = {(tan θ + sec θ) (tan θ - sec θ + 1)}/(tan θ - sec θ + 1)
↠ A = tan θ + sec θ
↠A = (sin θ/cos θ) + (1/cos θ)
↠A = (sin θ + 1)/cos θ
↠A = (1 + sin θ)/cos θ
↠A = B, (Proved)