Math, asked by oumambhai, 6 months ago

1. Prove that:
1+sin A
1-sin A
= sec A + tan A.​

Answers

Answered by SpaceyStar
24

We're asked to prove that  \sf{ \sqrt{ \dfrac{1 + sinA}{1 -  sinA}}  = secA + tanA }

Rationalising the denominator of LHS,

\implies{ \sf{\sqrt{ \dfrac{1 + sinA}{1 - sinA}  \times  \dfrac{1  +  sinA}{1  + sinA} }}}

Now multiplying accordingly,

 \implies{\sf{ \sqrt{ \dfrac{1 +  {sin}^{2}A}{ 1 -  {sin}^{2}A}}}}

Now let's use this identity :

 \dag \:  \:   \: \:  \:  \boxed{ \sf{ {sin}^{2}A +  {cos}^{2}A = 1}}

 \implies{ \sf{  {cos}^{2}A = 1 -  {sin}^{2} A}}

Let's substitute this in place of denominator.

\implies{ \sf{ \sqrt{ \dfrac{1 +  {sin}^{2}A}{ {cos}^{2}A}}}}

As both numerator and denominator has squares, it can be taken as a whole

\implies {\sf{ \sqrt{( \dfrac{1 + sinA}{cosA})^{2}  }}}

Here the sqaure and root will get cancelled obviously, so we get,

 \implies{\sf{ \dfrac{1 + sinA}{cosA}}}

Which can also be written as

 \implies{\sf{ \dfrac{1}{cosA}  +  \dfrac{sinA}{cosA}}}

We know that,

 \sf{ \dfrac{1}{cosA}  = secA}

And, {\sf{\dfrac{sinA}{cosA}  = tanA}}

Therefore,

 \boxed{ \sf{ \frac{1}{cosA}  +  \frac{sinA}{cosA}  = secA + tanA}}

Hence Proved!

Similar questions