1] prove that:( 1 -sin² Θ) sec² Θ=1.
2] If sinA + cos A= p and sec A+ consec A=q show that q (p²-1)=2p.
Answers
Answered by
7
1)
LHS:
(1-sin²Ф)sec²Ф= cos²Ф×sec²Ф=1=RHS
2)
p²-1=sin²a+cos²+2sinAcosA-1
1+2sinAcosA-1=2sinAcosA
q(p²-1)=(secA+cosecA)(2sinAcosA)
= 2(sinA+cosA)
2p=2(sinA+cosA)
q(p²-1)=2p
hence proved
LHS=RHS
LHS:
(1-sin²Ф)sec²Ф= cos²Ф×sec²Ф=1=RHS
2)
p²-1=sin²a+cos²+2sinAcosA-1
1+2sinAcosA-1=2sinAcosA
q(p²-1)=(secA+cosecA)(2sinAcosA)
= 2(sinA+cosA)
2p=2(sinA+cosA)
q(p²-1)=2p
hence proved
LHS=RHS
Similar questions