Math, asked by tejasking2406, 3 months ago

1
Prove that (1+tan^2 theta) +[1+1/tan^2theta]=1/sin^2theta-sin^4theta​

Answers

Answered by priyasha366
1

Step-by-step explanation:

(1 + tan²θ) + (1 + 1/tan²θ)

sec²θ + cosec²θ

\frac{1}{cos^{2} } + \frac{1}{sin^{2} }  

\frac{sin^{2} + cos ^{2}  }{sin^{2} cos^{2} } = \frac{1}{sin^{2} (1 - sin^{2}) }

\frac{1}{sin^{2} -sin^{4}}

L.H.S = R.H.S

Hence proved

[1 + tan²θ = sec²θ , 1 + 1/tan²θ  = cosec²θ , 1- sin²= cos², sin²+cos² = 1]

Answered by faizshaikh9012
0

plz bdkd sks sjwbejdbdos

Attachments:
Similar questions