Math, asked by kakadeprithviraj99, 4 months ago

1) Prove that √2 is an irrational number.​

Answers

Answered by Anonymous
114

\huge{ \bold{ \boxed  { \color {blue}{✿ɑղՏաҽɾ✿}}}}

To ProvE:

  • √2 is irrational number.

SolutioN:

Let \: \sqrt{2} = \frac{a}{b}  \: where  \: a, \: b  \: are \:  integers \:  b \:  ≠  \: 0   \: we  \: also \\  \:  suppose \:  that \:   \frac{a}{b}  \:  is \:  written  \: in \:  the  \: simplest \:  form

Now  \:  \sqrt{2} =  \frac{a}{b}   \\ ⇒ 2 = a2 / b2  \\ ⇒ 2b2 = a2 \\  ∴ 2  b2  \: \:  is   \: \: divisible \:  \:  by \: \:   2  \\ ⇒ a2 \:  \:  is \:  \:  divisible \:   \: by \: \:   2  \\ ⇒ a  \:  \: is  \: \:  divisible \:  \:  by  \: \:  2

let \:  \:   a = 2c  \\ a2 = 4c2 \\  ⇒ 2b2 = 4c2  \\ ⇒ b2 = 2c2 \\  ∴ \:  \:  2c2 \:  \:  is  \:  \: divisible \:  \:  by \:  \:  2  \\ ∴  \:  \: b2 \:  \:  is \:  \:  divisible  \:  \: by \:  \:  2  \\ ∴ \:  \:  b  \:  \: is \:  \:  divisible \:  \:  by  \:  \: 2

a  \: \:  are   \: \: b \: \:   are   \: \: divisible  \:  \: by  \:  \: 2  \:  \:  \\  this  \:  \: contradicts  \:  \:  our \:  \:  supposition  \:  \:  \\  \:  \:  that  \:  \:  \frac{a}{b}  \:  \:  is  \:  \: written  \:  \:  in   \:  \: the   \:  \: simplest  \:  \: form  \:  \: \\  \\  \\  Hence \:  \:  our \:  \:  supposition  \:  \: is \:  \:  wrong

 \huge{\bold{ ∴ √2  \:  \: is \:  \: a \:  \:  irrational  \:  \: number.}}

Answered by Sizzllngbabe
27

Answer:

 \sf \: Let \:   \sqrt{2}  \:  be \:  a \:  rational  \: number 

 \sf \therefore \:  \sqrt{2} = \frac{ p}{q}  [ p  \: and  \: q \:  are  \: in  \: their  \: least  \\  \sf \: terms  \: i.e., HCF  \: of  \: (p,q)=1  \: and  \: q ≠ 0

On squaring both sides, we get 

                   p²= 2q²                                                                                    ...(1)

Clearly, 2 is a factor of 2q²

⇒ 2 is a factor of p²                                                                    [since, 2q²=p²]

⇒ 2 is a factor of p

 Let p =2 m for all m ( where  m is a positive integer)

Squaring both sides, we get 

            p²= 4 m²                                                                                          ...(2)

From (1) and (2), we get 

           2q² = 4m²      ⇒      q²= 2m²

Clearly, 2 is a factor of 2m²

⇒       2 is a factor of q²                                                      [since, q² = 2m²]

⇒       2 is a factor of q 

Thus, we see that both p and q have common factor 2 which is a contradiction that H.C.F. of (p,q)= 1

     Therefore, Our supposition is wrong

Hence √2 is not a rational number i.e., irrational number.

Similar questions