Math, asked by Ganeshdoke606, 4 months ago

1. Prove that, 2(sinº e + cosº e) - 3(sin + coso) + 1 = 0,​

Answers

Answered by Dhruv429
1

Answer:

LHS=2(sin

6

θ+cos

6

θ)−3(sin

4

θ+cos

4

θ)+1

=2{(sin

2

θ+cos

2

θ)

3

−3sin

2

θcos

2

θ(sin

2

θ+cos

2

θ)}−3(sin

2

θ+cos

2

θ)

2

−2(sin

2

θcos

2

θ)}+1

We know, [sin²x+cos²x=1]

=2{1−3sin

2

θcos

2

θ}−3{1−2sin

2

θcos

2

θ}+1

=2−6sin

2

θcos

2

θ−3+6sin

2

θcos

2

θ+1

=0

=RHS

I hope this will be help you

Similar questions