Math, asked by tanmaykale12567, 9 months ago

1. Prove that √3 is irrational. *

Answers

Answered by Missaayu
103

Solution:

{\sf{\underline{Let\;assume\;that\;\sqrt{3}\;is\;rational\;number,}}}

\sf{\implies \sqrt{3}=\dfrac{x}{y}\;\;\;(Where\;x\;and\;y\;is\;co-prime\;number)}

\sf{\implies \sqrt{3}y=x}

\sf{\underline{Squaring\;both\;the\;sides,}}

\sf{\implies (\sqrt{3}y)^{2}=x^{2}}

\sf{\implies 3y^{2}=x^{2}}

\sf{\underline{If\;3\;is\;factor\;of\;x^{2}.\;So,\;3\;is\;also\;factor\;of\;x.}}

\sf{Let,\;x=3m\;\;\;(Where,\;m\;is\;integer)}

\sf{\underline{Squaring\;both\;the\;sides,}}

\sf{\implies x^{2}=9m^{2}}

\sf{\underline{Substitute\;the\;value\;of\;x^{2},}}

\sf{\implies 3y^{2}=9m^{2}}

\sf{\implies y^{2}=\dfrac{9m^{2}}{3}}

\sf{\implies y^{2}=3m^{2}}

\sf{\underline{If\;3\;is\;factor\;of\;y^{2}.\;So,\;3\;is\;also\;factor\;of\;y.}}

\sf{\underline{Hence,\;3\;is\;factor\;of\;both\;x\;and\;y.}}

\sf{\underline{Our\;assumption\;is\;wrong.}}

\bf{\underline{Hence,\;\sqrt{3}\;is\;irrational\;number.}}

Answered by Anonymous
54

To Prove :-

• √3 is irrational.

_____________________

Solution :-

If possible, let √3 be rational and let it's simplest form be a/b.

Then, a and b are integers having no common factor other than 1, and b 0

Now,

3 = a/b => 3 = a²/b² [ on squaring both sides ]

=> 3b² = a² ___1)

=> 3 divides a² [ since, 3 divides 3b² ]

=> 3 divides a

[ since, 3 is prime and 3 divides => 3 divides a ]

Let a = 3c for some integer c.

Putting a = 3c in (1) , we get

3b² = 9c² => b² = 3c²

=> 3 divides b² [ since, 3 divides 3c² ]

=> 3 divides b

[ since, 3 is prime and 3 divides => 3 divides b ]

Thus, 3 is a common factor of a and b.

But this contradicts the fact that a and b have no common factor other than 1.

The contradiction arises by assuming "3 is irrational".

Hence, 3 is irrational.

_____________________

Similar questions