Math, asked by alaxmikantthakare200, 11 days ago

1) Prove that: cos 3x-cos 7x / sin 9x+sin x =cos 2x.tan 4x-sin 2x​

Answers

Answered by VineetaGara
0

To prove:

cos 3x-cos 7x / sin 9x+sin x =cos 2x.tan 4x-sin 2x​

Formula used:

sinC+sinD =2sin(C+D/2)cos(C-D/2)

CosC-CosD=2sin(C+D/2)sin(D-C/2)

sin(A -B) = sinAcosB - cosAsinB

Proof:

L.H.S.,

cos 3x-cos 7x / sin 9x+sin x = \frac{2sin5xsin2x}{2sin5xcos4x}

                                                =  \frac{sin2x}{cos4x}

R.H.S.,

cos 2x.tan 4x-sin 2x​ = \frac{cos2x . sin4x}{cos4x} - sin2x

                                 = \frac{cos2x . sin4x- sin2xcos4x}{cos4x}

                                 = \frac{sin(4x-2x)}{cos4x}

                                 = \frac{sin2x}{cos4x}

L.H.S = R.H.S.

Hence, cos 3x-cos 7x / sin 9x+sin x =cos 2x.tan 4x-sin 2x​

Proved

#SJP1

                             

Similar questions