Math, asked by nadeemshaikh37, 1 year ago

1. Prove that difference of squares of two distinct
odd natural numbers is always a multiple of 8.​

Answers

Answered by anu24239
4

\huge\underline\mathfrak\red{Answer}

as \: we \: know \: that \: any \: odd \: no. \: can \\ be \: written \: as \\  \\ 4r + b \: where \: 0 \leqslant b  < 4 \\ where \: b \: is \: an \: odd \: no.  \: smaller\\ than \: 4 \\  \\ let \: any \: odd \: no. \: x \\  \\ x = 4r + b \\  \\ squaring \\  \\  {x}^{2}  = 16 {r}^{2}  +  {b}^{2}  + 8rb......(1) \\  \\ let \: another \: odd \: no. \: y \\  \\ y = 4s+ c \\  \\ squaring \\  \\  {y}^{2}  = 16 {s}^{2}  +  {c}^{2}  + 8sc ......(2)\\  \\ where \: s \:  \: is \: another \:  \: no. \: other \\ than \: r  \: and \: c \: i s\: another \: odd \: no. \:   \\ equal  \: to\: b\\  \\ subtract \: (1) \: from \: (2) \\  \\  {y}^{2}  -  {x}^{2}  = 16 {s}^{2}  +  {c}^{2}  + 8sc - 16 {r}^{2}   -   {b}^{2}   -  8rb \\  \\  {y}^{2}  -  {x}^{2}  = 16( {s}^{2}  -  {r}^{2} ) + 8(sc - rb) +  {c}^{2}  -  {c}^{2}  \\  \\  {y}^{2}  -  {x}^{2}  = 8(2 {s}^{2}  - 2 {r}^{2}  + sc - rb) \\  \\ let \: m = 2 {s}^{2}  - 2 {r}^{2}  + sc - rb \\  \\  {y}^{2}  -  {x}^{2}  = 8m

Similar questions