1. Prove that sin20° sin40° sin 80º =
V3/8
2. Prove that cos20° cos40° cos80°
8
3. Evaluate cos 20° + cos 100° + cos140°
Answers
Answer:
Step-by-step explanation:
1. Sin20°Sin40°Sin80°
= Sin(60°-20°/2)Sin(60°+20°/2)*Sin80°
//We know that CosA - CosB = - 2Sin(A+B/2)(SinA-B/2)
=> -1/2(Cos60° - Cos20) * Sin80°
=> 1/2(Cos20° - Cos60°)Sin80°
=> 1/2(Sin80°Cos20° - Cos60°Sin80°)
=> 1/4(2Sin80°Cos20° - 2Cos60°Sin80°)
//We know that SinA + SinB = 2Sin(A+B/2)Cos(A-B/2)
=> 1/4[2Sin(100°+60°/2)Cos(100°- 60°/2) - 2Sin(140°+20°/2)Cos(140°- 20°/2)
=> 1/4(Sin100° + Sin60° - Sin140° - Sin20°)
=> 1/4(Sin(180°-80°) + Sin60° - Sin(180°-40°) - Sin20°)
=> 1/4(Sin80° + Sin60° - Sin40° - Sin20°) (∵ Sin(180 - Ф) = SinФ)
=> 1/4(Sin60° + Sin(60°+20°) - Sin(60° - 20°) - SIn20°)
//We know that Sin(A+B) - Sin(A-B) = 2CosASinB
=> 1/4(Sin60° + 2Cos60°Sin20° - Sin20°)
=> 1/4(Sin60° + 2*1/2*Sin20° - Sin20°)
=> 1/4(Sin60° + SIn20° - Sin20°)
= 1/4(Sin60°) = 1/4* √3/2 = √3/8.
Hence proved.
2. Cos20°Cos40°Cos80°
= 1/2(2Cos20°Cos40°Cos80°)
//We know that Cos(A+B) + Cos(A-B) = 2CosACosB
=> 1/2([Cos(40°+20°) + Cos(40°-20°)] Cos80°)
=>1/2(Cos60°Cos80°+Cos20°Cos80°)
=> 1/4(2Cos60°Cos80°+ 2Cos20°Cos80°)
//We know that Cos(A+B) + Cos(A-B) = 2CosACosB
=>1/4(Cos80° + Cos(20°+80°) + Cos(80°-20°))
=>1/4(Cos80° + Cos100° + Cos60°)
=>1/4(Cos80° + Cos(180°-80°) + Cos60°)
=>1/4(Cos80° - Cos80° + Cos60°) (∵ Cos(180 - Ф) = -CosФ)
=> 1/4(Cos60°)
=>1/4*1/2
=>1/8.
Hence Proved.
3. Cos20°+ Cos100°+cos140°
//We know that CosA + CosB = 2Cos(A+B/2)Cos(A-B/2)
//We know that Cos(180 - Ф) = -CosФ
=> 2Cos(100°+20°/2)Cos(100°-20°/2) + Cos(180°-40°)
=> 2Cos60°Cos40° - Cos40°
=> Cos40° - Cos40°
=> 0