Math, asked by himeshshah621, 3 months ago



1 Prove that
sin^{4}a - cos^{4}  = 1 - 2cos^{2} a


Answers

Answered by Ladylaurel
7

Correct Question:

Prove that :

\sf{{sin}^{4} \: A - {cos}^{4} \: A = 1 - 2{cos}^{2} \: A}

Answer :-

Given to prove :

  • \sf{{sin}^{4} \: A - {cos}^{4} \: A = 1 - 2{cos}^{2} \: A}

Solution :

L.H.S = \sf{{sin}^{4} \: A - {cos}^{4} \: A}

\sf{\longrightarrow \: {sin}^{4} \: A - {cos}^{4} \: A}

\sf{\longrightarrow \: ({sin}^{2} \: A {)}^{2} - ({cos}^{2} \: A {)}^{2}}

\sf{\longrightarrow \: ({sin}^{2} \: A - {cos}^{2} \: A) \: ({sin}^{2} \: A + {cos}^{2} \: A)}

\sf{\longrightarrow \: ({sin}^{2} \: A - {cos}^{2} \: A) \: (1)} \:  \:  \:  \: {}_{.. \: .. \: ..} \: \lgroup \sf{({sin}^{2} \: A + {cos}^{2} \: A) = 1} \rgroup

\sf{\longrightarrow \: {sin}^{2} \: A - {cos}^{2} \: A}

\sf{\longrightarrow \: (1 - {cos}^{2} \: A) - {cos}^{2} \: A} \:  \:  \:  \: {}_{.. \: .. \: ..} \: \lgroup \sf{(1 - {cos}^{2} \: A) = {sin}^{2} \: A} \rgroup

\sf{\longrightarrow \: 1 - {cos}^{2} \: A - {cos}^{2} \: A}

\sf{\longrightarrow \: 1 - 2{cos}^{2} \: A = R.H.S}

Hence, Proved!

⠀⠀⠀⠀⠀ ⠀________________________

Things to remember :-

  • \sf{1 + {cos}^{2} \: A = {sin}^{2} \: A}

  • \sf{{sin}^{2} \: A + {cos}^{2} = 1}

rsagnik437: Excellent! :)
Ladylaurel: Thank you so much! :)
Similar questions