Math, asked by ammuviji26197, 5 months ago

1
Prove that the equation to the straight lines through
the origin, each of which makes an angle a with the
straight line y = x is x2 – 2xy sec 2a + y2 = 0​

Answers

Answered by yuvrajIsingh
0

Answer:

Step-by-step explanation:

The lines makes an angle α with the line y+x=0

Slope of given line that is m  

1

​  

=−1

Let the slope of the other line be m  

2

​  

 

The angle between straight lines thatt is tanθ=  

​  

 

1+m  

1

​  

m  

2

​  

 

m  

1

​  

−m  

2

​  

 

​  

 

​  

 

tanα=  

​  

 

1−1.m  

2

​  

 

−1−m  

2

​  

 

​  

 

​  

=  

​  

 

m  

2

​  

−1

m  

2

​  

+1

​  

 

​  

 

m  

2

​  

−1

m  

2

​  

+1

​  

=tanα,  

m  

2

​  

−1

m  

2

​  

+1

​  

=−tanα

⇒m  

2

​  

=  

tanα−1

tanα+1

​  

,  

tanα+1

tanα−1

​  

 

Equation of straght line with given slope and a point is y=mx+c

Lines passes through origin 0=0.m+c

⇒c=0

So the equation of lines are y=  

tanα−1

tanα+1

​  

x and y=  

tanα+1

tanα−1

​  

x

y=  

sinα−cosα

sinα+cosα

​  

x,y=  

sinα+cosα

sinα−cosα

​  

x

Combined equation of straight lines  

(y−  

sinα−cosα

sinα+cosα

​  

x)(y−  

sinα+cosα

sinα−cosα

​  

x)=0

y  

2

−xy(  

sinα+cosα

sinα−cosα

​  

)−xy(  

sinα−cosα

sinα+cosα

​  

)+(  

sinα−cosα

sinα+cosα

​  

)(  

sinα+cosα

sinα−cosα

​  

)x  

2

=0

y  

2

−xy(  

(sinα+cosα)(sinα−cosα)

(sinα−cosα)  

2

+(sinα+cosα)  

2

 

​  

)+x  

2

=0

y  

2

−xy(  

sin  

2

α−cos  

2

α

2

​  

)+x  

2

=0

y  

2

−xy(  

−cos2α

2

​  

)+x  

2

=0

y  

2

+2xysec2α+x  

2

=0

Hence proved

Answered by Nidhisaa
0

Answer:

These 4 pictures may help u..

Attachments:
Similar questions