Math, asked by NARASIMAH, 2 months ago

1 +
Prove the identity : tan A + cot A = sec A, cosec A​

Answers

Answered by SAM0345
0

Step-by-step explanation:

Consider L.H.S

tanA + cot A

= sinA/cos A + cos A / sin A

= sin²A + cos²A / sin A × cos A (cross multiplying )

= 1 / sin A × cos A ( sin²A + cos²A = 1 )

= 1/sinA × 1/cos A

= cosec A × sec A ( cosecA = 1/sin A , sec A = 1/cosA )

L.H.S = R.H.S

Hence Proved

Hope This Helps

Pls Vote

Answered by Ladylaurel
7

Correct Question:

Prove the identity :

\sf{tan \: A + cot \: A = sec \: A \: . \: cosec \: A}

Answer :-

Given to prove the identity :

  • tan A + cot A = sec A . cosec A

L.H.S =  \sf{tan \: A + cot \: A}

\sf{ = \dfrac{sin \: A}{cos \: A} + \dfrac{cos \: A}{sin \: A}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {}_{.. \: ...} \: \:   \bigg\lgroup \because \sf{ \red{tan \: A = \dfrac{sin \: A}{cos \: A}} \:  \: and \:  \:  \red{cot \: A = \dfrac{cos \: A}{sin \: A}} \bigg \rgroup}

\sf{= \dfrac{{sin}^{2} \: A +  {cos}^{2} \: A}{cos \: A \: . \: sin \: A}}

\sf{= \dfrac{1}{cos \: A \: . \: sin \: A}} \:  \:  \:  \: \:  \:  \:  \:  \:  \: {}_{... \: ..} \:  \: \lgroup \because \sf{ \red{{sin}^{2} \: A + {cos}^{2} \: A = 1} \rgroup}

\sf{= sec \: A \: . \: cosec \: A = \bf{R.H.S}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {}_{.. \: ...} \: \:   \bigg\lgroup \because \sf{ \red{sec \: A = \dfrac{1}{cos \: A}} \:  \: and \:  \:  \red{cosec \: A = \dfrac{1}{sin \: A}} \bigg \rgroup}

Hence, L.H.S = R.H.S

____________________

Things to remember :-

  • \sf{tan \: A = \dfrac{sin \: A}{cos \: A}}

  • \sf{cot \: A = \dfrac{cos \: A}{sin \: A}}

  • \sf{cosec \: A = \dfrac{1}{sin \: A}}

  • \sf{sec \: A = \dfrac{1}{cos \: A}}

  • \sf{{sin}^{2} \: A + {cos}^{2} \: A = 1}

rsagnik437: Great :)
Ladylaurel: Thank you :)
Similar questions