Math, asked by bharttruhariswain12, 8 months ago

1. PT 24
5. xyp + y (2x - y)q = 2xz.

Answers

Answered by Swarup1998
6

Lagrange's Solution of a Linear Partial Differential Equation

Solution:

Here, xyp+y(2x-y)q=2xz

Then Lagrange's subsidiary equations are

\quad\frac{dx}{xy}=\frac{dy}{y(2x-y)}=\frac{dz}{2xz}

Taking the first two ratios, we get

\quad\frac{dx}{x}=\frac{dy}{2x-y}

\Rightarrow 2x\:dx-y\:dx=x\:dy

\Rightarrow 2x\:dx-(y\:dx+x\:dy)=0

\Rightarrow 2x\:dx-d(xy)=0

Taking integration on both sides, we get

\quad \int 2x\:dx-\int d(xy)=c where c = int. const.

\Rightarrow x^{2}-xy=c ...(1)

Now taking the first and the third ratio, we get

\quad \frac{dx}{y}=\frac{dz}{2z}

\Rightarrow \frac{dx}{\frac{x^{2}-c}{c}}=\frac{dz}{2z} [by (1)]

\Rightarrow\frac{2x\:dx}{x^{2}-c}-\frac{dz}{z}=0

On integration, we get

\quad\int\frac{2x\:dx}{x^{2}-c}-\int\frac{dz}{z}=c' where c' = int. const.

\Rightarrow log(x^{2}-c)-log(z)=log(c')

\Rightarrow log(\frac{x^{2}-x^{2}+xy}{z}=log(c') [by (1)

\Rightarrow \frac{xy}{z}=c' ...(2)

Hence the general solution is

\quad \phi(x^{2}-xy,\:\frac{xy}{z})=0 where \phi is arbitrary.

Answer: \phi(x^{2}-xy,\:\frac{xy}{z})=0 where \phi is arbitrary.

Read more on Brainly.in

Solve: xyp + y (2x - y)q = 2xz

- https://brainly.in/question/20037529

Similar questions