Math, asked by Anonymous, 5 months ago

1) Rationalise the denomination of 5/√3-√5

2) Rationalise the denomination of 1/7+3√2​

Answers

Answered by Anonymous
72

{ \bf{ \underline{Question \:  (1)}}}

↦ \:  \frac{5}{ \sqrt{3} -  \sqrt{5}  }

{ \bf{ \underline{Solution \:  (1)}}}

 \frac{5}{ \sqrt{3}  -  \sqrt{5} } =  \frac{5}{ \sqrt{3}  -  \sqrt{5} }  \times  \frac{ \sqrt{3}  +  \sqrt{5} }{ \sqrt{3} +  \sqrt{5}  }

 =  \frac{5( \sqrt{3}  +  \sqrt{5} }{3 - 5}

 = ( \frac{ - 5}{2} ) \: ( \sqrt{3}  +  \sqrt{5} )

{ \bf{ \underline{Question \:  (2)}}}

↦ \:  \frac{1}{7 + 3 \sqrt{2} }

{ \bf{ \underline{Solution \:  (2)}}}

 \frac{1}{7 + 3 \sqrt{2} }  =  \frac{1}{7 + 3 \sqrt{2} }  \times ( \frac{7 - 3 \sqrt{2} }{7 - 3 \sqrt{2} } )

 =  \frac{7 - 3 \sqrt{2} }{49 - 18}  =  \frac{7 - 3 \sqrt{2} }{31}

_______________________________

Answered by ItzBrainlyJewel
107

1.

\sf{Question :-}

\: \frac{5}{ \sqrt{3} - \sqrt{5} }

\sf{Solution :-}

\: \frac{5}{ \sqrt{3} - \sqrt{5} } = \: \frac{5}{ \sqrt{3} - \sqrt{5} } × \: \frac{ \sqrt{3} + \sqrt{5}}{ \sqrt{3} + \sqrt{5} }

\frac{5( \sqrt{3} + \sqrt{5)} }{3 - 5}

( \frac{ - 5}{2} ) \: ( \sqrt{3} + \sqrt{5} ) \mathrm\purple{[Answer]}

2.

\sf{Question :-}

\: \frac{1}{7 + 3 \sqrt{2} }

\sf{Solution :-}

\frac{1}{7 + 3 \sqrt{2} } = \frac{1}{7 + 3 \sqrt{2} } \times ( \frac{7 - 3 \sqrt{2} }{7 - 3 \sqrt{2} } )

\frac{7 - 3 \sqrt{2} }{49 - 18} = \frac{7 - 3 \sqrt{2} }{31} \mathrm\pink{[Answer]}

Similar questions