Math, asked by PriyanshiGodia, 8 months ago

)

1. Rationalise the denominator of

2
________

√3 − √5​

Answers

Answered by Uriyella
1

Given :–

  • A fraction:  \frac{2}{ \sqrt{3} -  \sqrt{5}  }

Required :–

  • Rationalise the denominator.

Solution :–

Given equation is,

 \frac{2}{ \sqrt{3} -  \sqrt{5}  }

Now, multiply the denominator and the numerator by  \dfrac{\sqrt{3} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}

So,

 \frac{2}{ \sqrt{3}  -  \sqrt{5} }  \times  \frac{ \sqrt{3} +  \sqrt{5}  }{ \sqrt{3} +  \sqrt{5}  }

Now, multiply the numerator to numerator and the denominator to denominator,

We know that,

[ (a + b)(a – b) = (a)² – (b)² ]

 \frac{2( \sqrt{3} +  \sqrt{5} ) }{ {( \sqrt{3} )}^{2} -  { (\sqrt{5}) }^{2}  }

Exponent (2) cuts the root square.

So,

 \frac{2( \sqrt{3} +  \sqrt{5} ) }{3 - 5}

Now, multiply the roots with 2, we obtain

 \frac{2 \sqrt{3} + 2 \sqrt{5} }{ - 2}

So, the final result is :–

 \frac{2 \sqrt{3} + 2 \sqrt{5}}{ - 2}

After rationalising the denominator we get,

–2 as a denominator.

Hence,

–2 is the rationalising of the denominator.

Answered by dss12345
1

this is how to rationalise denominato

Attachments:
Similar questions