Math, asked by Boris12, 10 months ago

1/root 5 + root 3 rationalise it

Answers

Answered by Nereida
12

Answer:-

\leadsto\tt{\dfrac{1}{\sqrt{5}}+\sqrt{3}}

By LCM,

\leadsto\tt{\dfrac{1}{\sqrt{5}}+\dfrac{\sqrt{3}}{1}}

\leadsto\tt{\dfrac{1 + \sqrt{15}}{\sqrt{5}}}

Rationalising,

\leadsto\tt{\dfrac{1 + \sqrt{15}}{\sqrt{5}}\times \dfrac{\sqrt{5}}{\sqrt{5}}}

\leadsto\tt{\dfrac{1 + \sqrt{5\times3\times5}}{5}}

Simplifying,

\leadsto\tt{\bf{\dfrac{1 + 5\sqrt{3}}{5}}}

\rule{200}2

Rationalisation is converting an irrational denominator to rational denominator in a fraction.

It helps to compute between rational denominators rather than the irrational denominators.

\rule{200}2

Answered by chaitanyaraj
5

Step-by-step explanation:

 \frac{1}{ \sqrt{5} +  \sqrt{3}  } =   \frac{ \sqrt{5}  -  \sqrt{3} }{( \sqrt{5}  +   \sqrt{3} )( \sqrt{5} -  \sqrt{3}  )}  \\  =  \frac{ \sqrt{5} -  \sqrt{3}  }{ { \sqrt{5} }^{2} -  { \sqrt{3} }^{2}  }  =  \frac{ \sqrt{5} -  \sqrt{3}  }{5 - 3}  \\  =  \frac{ \sqrt{5}  -  \sqrt{3} }{2}

<font color=blue><marquee behavior=alternate><b>PEASE MARK BRAINLIEST</b></font></marquee>

Similar questions