Math, asked by ShivanshSinghRana, 8 months ago

1/root(8-root(32)) is equal to- Also explain your answer

Answers

Answered by SrijanShrivastava
0

To Find:

 \frac{1}{ \sqrt{8 -  \sqrt{32} } }

By factoring out the perfect square integer from the denominator

 \frac{1}{   2\sqrt{2 -  \sqrt{2} }  }

By completing the perfect square in the denominator

 \frac{1}{2}  \frac{ \sqrt{2  -   \sqrt{2} } }{( \sqrt{2 -  \sqrt{2} })( \sqrt{2  -   \sqrt{2} }  )}

 \frac{1}{2}  \frac{ \sqrt{2 -  \sqrt{2} } }{2 -  \sqrt{2} }

By rationalising the denominator

 \frac{1}{2}  \frac{ \sqrt{2 -  \sqrt{2} } (2 +  \sqrt{2}  )}{(2 -  \sqrt{2} )(2 +  \sqrt{2}) }

 \frac{1}{2}  \frac{2 \sqrt{2 -  \sqrt{2} }  +  \sqrt{4 -  2\sqrt{2} } }{4 - 2}

 \frac{2 \sqrt{2 -  \sqrt{2} }  + 4 \sqrt{4 - 2 \sqrt{2} } }{4}

Similar questions