Hindi, asked by sahajsaxena2, 2 months ago

1/(root2+ root3+ root5)

Answers

Answered by kshitijkumar78
1

Answer:

1/(√2+√3+√5)

1{(√2+√3)-(√5)}/(√2+√3)²-(√5)²

(√2+√3)-(√5)/(√2)²+(√3)²+2√6-(√5)²

√2+√3-√5/2+3-5+2√6

√2+√3-√5/2√6

√6(√2+√3-√5)/2×6

√12+√18-√30/12

Answered by dassrijani1610
0

Answer:

 \frac{1}{ \sqrt{3} +  \sqrt{2}  +  \sqrt{5}  }  =  \frac{3 \sqrt{2} + 2 \sqrt{3}  -  \sqrt{30} }{12}

Explanation:

 \frac{1}{ \sqrt{2} +  \sqrt{3}  +  \sqrt{5}  }

 \frac{ \sqrt{3}  +  \sqrt{2}  -  \sqrt{5} }{( \sqrt{3} +  \sqrt{2} +  \sqrt{5}  )( \sqrt{3}   +  \sqrt{2} -  \sqrt{5}  )}

 \frac{ \sqrt{3}  +  \sqrt{2}  -  \sqrt{5} }{ {( \sqrt{3}  +  \sqrt{2} )}^{2} -  ({ \sqrt{5} )}^{2}  }

 \frac{ \sqrt{3}  +  \sqrt{2}  -  \sqrt{5} }{3 + 2 + 2 \sqrt{6}  - 5}

 \frac{ \sqrt{3}   +  \sqrt{2} -  \sqrt{5}  \: }{5 - 5 + 2 \sqrt{6} }

 \frac{ \sqrt{3} +  \sqrt{2}  -  \sqrt{5}  }{2 \sqrt{6} }

multiplying 6 in both

 \frac{ \sqrt{6}( \sqrt{3}  +  \sqrt{2}   -  \sqrt{5} )}{ \sqrt{6}   \: \:  \times \:  \:  2 \sqrt{6}  }

 \frac{3 \sqrt{2}  + 2 \sqrt{3} -  \sqrt{30}  }{12}

THEREFORE

THE ANSWER IS :-

 \frac{1}{ \sqrt{3} +  \sqrt{2}  +  \sqrt{5}  }  =  \frac{3 \sqrt{2} + 2 \sqrt{3}  -  \sqrt{30} }{12}

Similar questions