Math, asked by jaswalb23, 1 month ago

1/root5+root3 + 1/2^(root5-root3)

Answers

Answered by prathmeshankushe
1

answer of these question is 1

Attachments:
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given that-}\\

 \sf{ \frac{1}{ \sqrt{5} +  \sqrt{3}  } +  \frac{1}{2} ( \sqrt{5} -  \sqrt{3} )  } \\

 \sf{  = \frac{1}{ \sqrt{5} -  \sqrt{3}   }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  } +  \frac{1}{2}   ( \sqrt{5}  -  \sqrt{3}) } \\

 \sf{  = \frac{1( \sqrt{5}  -  \sqrt{3} )}{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} -  \sqrt{3})  } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} -  \sqrt{3})  } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{( \sqrt{5})^{2}  - (  \sqrt{3} {)}^{2}   } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{5- 3  } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{2 } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{ =  \frac{1}{2} ( \sqrt{5}  -  \sqrt{3} ) +  \frac{1}{2} ( \sqrt{5}  -  \sqrt{3} )} \\

 \sf{ =  \bigg( \frac{1}{2} +  \frac{1}{2}  \bigg) \Big( \sqrt{5}  -  \sqrt{3}   \Big)} \\

 \sf{ = 1 \times  \Big( \sqrt{5}  -  \sqrt{3}  \Big)}

 \sf{ =  \Big( \sqrt{5}  -  \sqrt{3}  \Big)} \:  \:  \:  \bf{Ans.} \\

\textsf{Hope this helps.}\\

Similar questions