1) secΘ = 5/7, Find 1 + tanΘ/1 - tanΘ
2) Prove that, 2 cos²Θ - 1/1- 2sin²Θ = 1
3) sinA = 3/5, cosB = 12/13, Find tanA - tanB/1 + tanA - tanB
4) If sin(α - β) = 1, cos (2α + β) = 1/2, Find tanα
Answers
Question 1) :- secΘ = 5/4 Find 1 + tanΘ/1 - tanΘ .
we know that,
- sec²A - tan²A = 1 .
So,
→ sec²Θ - tan²Θ = 1
→ (5/4)² - tan²Θ = 1
→ (25/16) - 1 = tan²Θ
→ tan²Θ = (25 - 16)/16
→ tan²Θ = 9/16
→ tanΘ = 3/4 .
Putting value now,
→ (1 + 3/4) / (1 - 3/4)
→ (7/4) / (1/4)
→ 7 (Ans.)
________________
Question :- 2) 2 cos²Θ - 1/1- 2sin²Θ = 1 .
Solution :-
we know that,
- sin²A + cos²A = 1 .
- sin²A = (1 - cos²A)
Putting value of sin²Θ in denominator , we get,
→ (2cos²Θ - 1) / {1 - 2((1 - cos²Θ)} = 1 .
→ (2cos²Θ - 1) / ( 1 - 2 + 2cos²Θ) = 1
→ (2cos²Θ - 1) / (2cos²Θ - 1) = 1
→ 1 = 1 . (Proved.)
________________
Question 3) :- sinA = 3/5, cosB = 12/13, Find tanA - tanB/1 + tanA - tanB .
Solution :-
we know that,
- sinA = Perpendicular / Hypotenuse
- cosA = Base / Hypotenuse .
- tanA = Perpendicular/Base .
So,
→ sinA = 3/5 = P/H
- P = 3
- H = 5
then,
→ B = √[H² - P²] = √[5² - 3²] = √(25 - 9) = √16 = 4.
Similarly,
→ cosB = 12/13 = B/H
- B = 12
- H = 13
then,
→ P = √[H² - B²] = √[13² - 12²] = √(169 - 144) = √25 = 5.
therefore,
- tanA = P/B = 3/4 .
- tanB = P/B = 5/12 .
Hence,
→ (tanA - tanB)/(1 + tanA - tanB)
→ (3/4 - 5/12) / (1 + 3/4 - 5/12)
→{(9 - 5) /12} / {(12 + 9 - 5)/12}
→ (4/12) / (16/12)
→ (4/12) * (12/16)
→ (1/4) (Ans.)
_____________________
Question 4) :- If sin(α - β) = 1, cos (2α + β) = 1/2, Find tanα ?
we know that,
- sin90° = 1 .
- cos60° = 1/2 .
So,
→ sin(α - β) = 1
→ sin(α - β) = sin90°
→ (α - β) = 90° --------- Eqn.(1) .
and,
→ cos (2α + β) = 1/2
→ cos (2α + β) = cos60°
→ (2α + β) = 60° --------- Eqn.(2)
adding Eqn.(1) and Eqn.(2) ,
→ (α - β) + (2α + β) = 60° + 90°
→ 3α = 150°
→ α = 50° .
therefore,
→ tanα = tan50°
_________________
Answer:
please follow me my dear friend please ❤️❤️