1/(sec A +tan A) -1/COS A=1/cos A-1/ (sec A - tan A)
Answers
Answered by
6
(secA + tanA - 1)/(tanA - secA + 1) = sec(1 + sinA)
LHS
(secA + tanA - 1)/(tanA - secA + 1)
substitute that 1 in the numerator by
sec^2A = 1 + tan^2A
sec^2A - tan^2A = 1
{(secA + tanA - (sec^2A - tan^2A)}/(tanA - secA + 1)
{(secA + tanA) - (secA + tanA).(secA - tanA)}/(tanA - secA + 1)
Now, take (secA + tanA) common
(secA + tanA){1 - (secA - tanA)} / (tanA - secA + 1)
(secA + tanA){1 - secA + tanA} / (tanA - secA + 1)
secA + tanA
1/cosA + sinA/cosA
(1 + sinA) / cosA
secA(1 + sinA)
Similar questions