Math, asked by laptopasusandy, 1 year ago

1/sec A+ tan A =1-sin A /cos A

Answers

Answered by abdul9838
4

 \small \bf \blue{hey \: mate \: here \: is \: ur \: ans} \\  \\  \small \bf \blue{ \huge \: solution} \\  \\  \small \bf \blue{as \: given} \\  \\  \small \bf \blue{ \frac{1}{sec \: a}  +tan \: a =  \frac{1 - sin \: a}{cos \: a}  }    \\  \\  \small \bf \blue{taking \: rhs} \\ \\  \small \bf \blue{ \frac{1 - sin \: a}{cos \: a} } \\  \\  \small \bf \blue{ \frac{(1 - sin \: a)(1 + sin \: a)}{cos \: a(1 + sin \: a)} } \\  \\  \small \bf \blue{using \: this \: identity} \\  \\  \small \bf \blue{ {a}^{2} -  {b}^{2}   = (a + b)(a - b)} \\  \\  \small \bf \blue{ \frac{ {1}^{2}  - sin^{2} a}{cos \: a(1 + sin \: a)} } \\  \\  \small \bf \blue{ \frac{1 - sin ^{2}a }{cos \: a(1 + sin \: a)} } \\  \\  \small \bf \blue{ \frac{cos^{2} a}{cos \: a(1 + sin \: a)}  \:  (hence \: sin^{2}  + cos^{2}  = 1)} \\  \\  \small \bf \blue{( \therefore \: cos^{2}  = 1 - sin^{2}) } \\  \\  \small \bf \blue{ \frac{cos \: a \:  \times cos \: a}{cos \: a(1  + sin \: a)} } \\  \\  \small \bf \blue{ \frac{cos \: a}{1 + sin \: a} } \\  \\  \small \bf \blue{ \frac{cos \: a}{1} +  \frac{cos \: a}{sin \: a}  } \\  \\  \small \bf \blue{ \frac{1}{sec \: a} + cot \: a \:(  \: ans) }

Similar questions