Math, asked by harman12345, 1 year ago

1/sec A -tan A = secA + tanA

Attachments:

Answers

Answered by Anonymous
5

Hope...

It comforts you...

Attachments:

Anonymous: plz! mark my answer as brainlist
Answered by Anonymous
5

We have to prove that :

 \frac{1}{ \sec \alpha -  \tan\alpha  }  =  \sec \alpha  +  \tan \alpha

On taking LHS :

 \frac{1}{ \sec\alpha  -  \tan \alpha   }  \\  \\  =  >  \frac{1}{ \frac{1}{ \cos\alpha } -  \frac{ \sin \alpha }{ \cos \alpha }  }  \\  \\  =  >  \frac{1}{ \frac{1 -  \sin \alpha  }{ \cos \alpha } }  \\  \\  =  >  \frac{ \cos\alpha  }{1 -   \sin\alpha  }   \\  \\  =  >  \frac{ \cos\alpha }{1 -  \sin \alpha }  \times  \frac{1 +  \sin \alpha }{1 +  \sin \alpha }  \\  \\  =  =  \frac{ \cos\alpha (1 +  \sin \alpha ) }{1 -  { \sin }^{2} \alpha  }  \\  \\  =  >  \frac{ \cos \alpha(1 +  \sin \alpha )  }{ { \cos  }^{2} \alpha  }  \\  \\  =  >  \frac{1 +  \sin \alpha }{ \cos \alpha }  \\  \\  =  >  \frac{1}{ \cos\alpha }  +  \frac{1}{ \sin \alpha  }  \\  \\  =  >  \sec\alpha  +  \tan \alpha

=> RHS

HENCE PROVED


Anonymous: kya ?
Anonymous: ??
Similar questions