(1/sec k-tan k)-(1/cos k)=(1/cos k)-(1/sec k+ tan k)
Answers
Answered by
1
Answer:
Given, LHS = 1 / seck - tank - 1/cosk
By Rationalizing LHS we will get,
1/ seck - tank * seck + tank/ seck + tank 1
- 1/cosk
= seck + tank / sec²k - tan²k - 1/ cosk
[ ( a + b ) ( a - b ) = a² - b² ]
= 1 /cosk - 1/cosk + tank = tank
Similarly, RHS = 1/cosk - 1/seck + tank
Rationalizing RHS, we will get,
1/cosk - 1/seck + tank * seck - tank/ seck - tank
= 1/cosk - seck - tank / sec²k - tan²k
[ ( a + b ) ( a - b ) = a² - b² ]
= 1/cosk - ( seck - tank)
= 1/ cosk - 1/cosk + tank
= tank
Hence, LHS = RHS
(HENCE PROVED)
PLEASE MARK AS BRAINLIEST
Answered by
2
❥Given, LHS = 1 / seck - tank - 1/cosk
❥By Rationalizing LHS we will get,
❥1/ seck - tank * seck + tank/ seck + tank 1
- 1/cosk
= seck + tank / sec²k - tan²k - 1/ cosk
[ ( a + b ) ( a - b ) = a² - b² ]
= 1 /cosk - 1/cosk + tank = tank
❥Similarly, RHS = 1/cosk - 1/seck + tank
❥Rationalizing RHS, we will get,
❥1/cosk - 1/seck + tank * seck - tank/ seck - tank
= 1/cosk - seck - tank / sec²k - tan²k
❥[ ( a + b ) ( a - b ) = a² - b² ]
= 1/cosk - ( seck - tank)
= 1/ cosk - 1/cosk + tank
= tank
❥Hence, LHS = RHS
Similar questions