Math, asked by rogerstechrk1, 1 year ago

1+sec-tan/1+sec+tan=1-sin/cos

Answers

Answered by chanchal12345
3

add theta ...as it is mandatory for applying trigonometric functions..

your answer is in pic attached..

hope helped.. ^_^

Attachments:
Answered by pulakmath007
17

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

TO PROVE

\displaystyle \:  \frac{ (sec  \theta  - tan \theta  + 1 \: )}{(  sec \theta +tan \theta +  1\: )} = \frac{( 1  -  sin \theta ) }{cos \theta}

PROOF

 \displaystyle \:  \frac{ (sec  \theta  - tan \theta  + 1 \: )}{(  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{ (sec \theta  -  tan \theta  +  sec²\theta-  tan²\theta}{ (  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{[(sec \theta  -  tan \theta)  +  (sec \theta+tan \theta) (sec \theta - tan \theta)}{ (  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{(sec\theta  -  tan \theta)(  sec \theta +tan \theta +  1\: ) }{( sec \theta +tan \theta +  1\: )}

  \displaystyle \:= (sec \theta   -  tan \theta \: )

  \displaystyle \: =  \frac{( 1  -  sin \theta ) }{cos \theta}

Similar questions