Math, asked by kumarneetesh253, 1 month ago

1 + sec theta/sec theta=sin^2 theta/1-cos theta. Prove that

Answers

Answered by assingh
28

Topic :-

Trigonometry

To Prove :-

\dfrac{1+\sec\theta}{\sec\theta}=\dfrac{\sin^2\theta}{1-\cos\theta}

Proof :-

Solving LHS,

\leadsto\dfrac{1+\sec\theta}{\sec\theta}

\leadsto\dfrac{1}{\sec\theta}+\dfrac{\sec\theta}{\sec\theta}

\leadsto\dfrac{1}{\sec\theta}+1

\leadsto\cos\theta+1

\left(\because\dfrac{1}{\sec\theta}=\cos\theta \right)

Solving RHS,

\leadsto\dfrac{\sin^2\theta}{1-\cos\theta}

\leadsto\dfrac{1-\cos^2\theta}{1-\cos\theta}

\left(\because\sin^2\theta+\cos^2\theta=1 \right)

\leadsto\dfrac{(1-\cos\theta)(1+\cos\theta)}{1-\cos\theta}

\left(\because a^2-b^2=(a-b)(a+b) \right)

\leadsto\dfrac{\cancel{1-\cos\theta}}{\cancel{1-\cos\theta}}\cdot(1+\cos\theta)

\leadsto 1+\cos\theta

We observe that LHS = RHS.

Hence, Proved !!

Additional Formulae :-

1+\tan^2\theta=\sec^2\theta

1+\cot^2\theta=\csc^2\theta

1+\cos2\theta=2\cos^2\theta

1-\cos2\theta=2\sin^2\theta

\sin2\theta=2\sin\theta\cos\theta

\cos2\theta=\cos^2\theta-\sin^2\theta

\sin3\theta=3\sin\theta-4\sin^3\theta

\cos3\theta=4\cos^3\theta-3\cos\theta

(\sin\theta+\cos\theta)^2=1+\sin2\theta

(\sin\theta-\cos\theta)^2=1-\sin2\theta

Similar questions