1/sec theta + tan theta - 1/ cos theta = 1/ cos theta - 1/ sec theta - tan theta prove that
Answers
Answered by
1
Answer:
Step-by-step explanation:
1/Secθ + Tanθ - 1/Cosθ = 1/Cosθ - 1/Secθ - Tanθ
L.H.S:
1/Secθ + Tanθ - 1/Cosθ
=> Secθ - Tanθ/(Secθ - Tanθ)(Secθ + Tanθ) - 1/Cosθ
=> Secθ - Tanθ/Sec²θ - Tan²θ - 1/Cosθ
= 1 - Sinθ/Cos - 1/Cosθ = 1 - Sinθ - 1 /Cosθ = -SInθ/Cosθ = -Tanθ.
R.H.S:
1/Cosθ - 1/Secθ - Tanθ
=> 1/Cosθ - (Secθ + Tanθ)/(Secθ - Tanθ)(Secθ + Tanθ)
=> 1/Cosθ - (Secθ + Tanθ)/Sec²θ - Tan²θ
=> 1/Cosθ - (1 + Sinθ)/Cosθ
=> 1 - 1 - Sinθ/Cosθ
=> - Sinθ /Cosθ = -Tanθ.
Thus L.H.S = R.H.S
Hence Proved.
Similar questions